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Abstract—This paper proposes a novel peak to average power
ratio (PAPR) reduction scheme that requires no side information
in orthogonal frequency division multiplexing (OFDM) systems.
Unlike the selective mapping (SLM) or the partial transmit se-
quence (PTS) scheme, the proposed scheme deals with post inverse
fast Fourier transform (IFFT) symbols and thus requires only a
single IFFT processor in the transmitter. Compared to other con-
ventional schemes implemented with a single IFFT processor, such
as the circularly shifted phase sequences (CSPS) or the optimised
circularly shifted phase sequences (OCSPS) method, the proposed
scheme achieves an even lower complexity since only phase rota-
tion and cyclic shifting of OFDM symbols are performed. More
importantly, the proposed scheme significantly outperforms the
CSPS and the OCSPS methods in reducing PAPR as shown in sim-
ulation results. An added benefit of the proposed scheme is that
it employs a linear receiver, such as a maximal likelihood (ML)
detector, a minimum mean square error (MMSE) estimator, or a
zero forcing (ZF) estimator, to demap quadrature amplitude mod-
ulation (QAM) symbols. Especially the ML detector demaps the
QAM symbols with no side information. Simulation results also
show that the bit error rate (BER) of the proposed scheme has no
loss when the ML detector, the ZF or the MMSE estimator is used
with hard-decision compared to that of the conventional OFDM
system without any PAPR reduction scheme over Rayleigh fading
channel.

Index Terms—Circularly shifted phase sequences (CSPS), com-
plementary cumulative distribution function (CCDF), optimized
circularly shifted phase sequences (OCSPS), orthogonal fre-
quency division multiplexing (OFDM), partial transmit sequence
scheme (PTS), peak-to-average power ratio (PAPR), time-domain
processing.
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I. INTRODUCTION

O RTHOGONAL FREQUENCY DIVISION MULTI-
PLEXING (OFDM) has recently been widely adopted

in various wireless communication standards, such as terres-
trial digital video broadcasting (DVB-T) and wireless local
area network (WLAN), thanks to high spectral efficiency and
robustness especially in a frequency selective channel envi-
ronment [1]–[3]. Because of the inherent Fourier transform
operation, where numerous sinusoidal waves of different fre-
quencies and phases are constructively or destructively added,
the output signal fluctuates with high peak-to-average power
ratio (PAPR), which requires the transmitter to use a linear high
power amplifier (HPA) with a wide linear region so as to avoid
the output signal distortion [4].
Many PAPR reduction schemes have been proposed during

the last decades, where most of them achieve a reduced PAPR
at the expense of a high computational complexity or an explicit
transmission of side information (SI). Among those are ampli-
tude clipping [5], [6], coding based schemes [7]–[9], tone reser-
vation (TR) [10], tone injection (TI) [10], active constellation
extension (ACE) [11], selected mapping (SLM) [12] and partial
transmit sequence (PTS) [13]–[18]. Note that the need of SI de-
creases the spectral efficiency in general when it is transmitted
through a dedicated channel. In [19], Breiling et al. proposed a
scrambling scheme which inserts several bits at the end of the
data bit stream before scrambling. This scheme does not require
an explicit SI transmission but the spectral efficiency is still re-
duced due to the inserted bits. Some PAPR reduction schemes
[20], [21] do not require SI, but they are applicable only to pilot
based OFDM systems.
High computational complexity is another main issue in the

design of PAPR reduction schemes. The circularly shifted phase
sequences (CSPS) and the optimised circularly shifted phase
sequences (OCSPS) methods proposed in [22] offer a lower
computational complexity than the conventional PTS scheme,
while the PAPR reduction performance of those schemes is
close to that of the conventional PTS scheme. Another PAPR
scheme with reduced complexity is the time domain symbol
combining (TDSC) scheme proposed in [23], where several
post-IFFT symbols are combined in various ways and normal-
ized in power before transmission in order to reduce PAPR by
utilizing the fact that each post-IFFT symbol is independent
from the other. However, the TDSC scheme has a shortcoming
in that the bit error rate (BER) performance is degraded because
of a varying output symbol power when combining post-IFFT
symbols.

1053-587X/$31.00 © 2012 IEEE
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Motivated by the fact that time-domain processing of post-
IFFT symbols is implemented with only a single IFFT pro-
cessor, this paper proposes a novel PAPR reduction scheme per-
formed in time domain with lower complexity. Similar to the
other PAPR reduction schemes, such as CSPS and OCSPS, the
proposed scheme generates a number of different representa-
tions each possibly with a different PAPR from a post-IFFT
symbol to give the diversity in PAPR. The proposed scheme
consists of two successive stages, which are phase rotation and
cyclic shifting by an offset. More specifically, at the phase ro-
tation stage the output symbol from IFFT is rotated in a com-
plex constellation domain by a certain degree. Subsequently, at
the cyclic shifting stage the quadrature component of the output
symbol from the phase rotation stage is cyclically shifted by a
certain offset, which is similar to offset-PSK (OPSK) modula-
tion except that the offset is large and variable in the proposed
scheme. We obtain the diversity in terms of PAPR by repeating
the two successive stages, while changing the value of the offset,
for a given times in an iterative fashion.
The intuition behind this iteration of two stages is as fol-

lows. The phase rotation of a post-IFFT symbol contributes
each sample in the symbol to redistribute the power of the
sample between the in-phase and quadrature components. In
other words, the amplitude of the in-phase or the quadrature
component can be reduced after the rotation. On the other
hand, the cyclic shifting of the quadrature components of a
post-IFFT symbol realigns the quadrature samples in time
(in-phase components are intact). Since the average power of
post-IFFT symbols does not change by the cyclic shifting, this
cyclic shifting stage aims to reduce the peak power and further
reduce the PAPR by separating the in-phase samples with high
amplitudes and the quadrature samples with high amplitudes
such that they are not aligned. This two step procedure of
first reducing the amplitude of in-phase or quadrature samples
and then realigning the quadrature components are done in an
iterative fashion to continue reducing the PAPR effectively.
Furthermore, the proposed scheme allows the receiver to use

a maximal likelihood (ML) detector to decode source symbols
without SI [24], [25]. A minimum mean square error (MMSE)
or a zero forcing (ZF) estimator can be used in the receiver if SI
is available at the receiver. It is shown that the decoded bits by
the ML detector (or by the ZF or the MMSE estimator) have no
bit error rate (BER) loss compared to the BER performance of
the OFDM system without any PAPR reduction scheme over
Rayleigh multipath fading channel. More importantly, exten-
sive simulations reveal that the proposed scheme offers a lower
PAPR than the conventional schemes using a single IFFT such
as the CSPS and the OCSPS methods.
This paper is organized as follows. Section II reviews the

representation of OFDM signals and PAPR in both continuous
and discrete time domains. Section III introduces the proposed
scheme along with the analytical formulation of the design.
The computational complexity of the proposed scheme is also
compared with those of the CSPS and the OCSPS methods.
Section IV provides the detailed description of the receiver
structure, where the ML detector, the ZF and the MMSE esti-
mators for the source symbols are derived. Section V presents
simulation results, followed by the concluding remarks in
Section VI.

II. OFDM SIGNALS AND PAPR

In OFDM system, a data block of symbols, denoted by
, is modulated by a set of orthogonal

subcarriers, , where denotes the
transpose. In order to preserve the orthogonality, the spacing
between neighboring subcarriers is set to be a multiple of
, i.e., where is the duration of an OFDM symbol

and is a positive integer. We set to be the least positive
integer, i.e., , in order to make full use of the bandwidth.
Then the transmitted OFDM symbol is given by

(1)

The PAPR of the transmitted OFDM symbol is defined in
continuous time domain as

(2)

But since practical OFDM systems are implemented by IFFT,
the PAPR is often measured in discrete time domain, where the
time domain samples are assumed to be oversampled by a cer-
tain factor 1. Then we can define the PAPR for the sampled
OFDM symbol with over-sampling factor, , as

(3)

where denotes expectation.

III. PROPOSED PAPR REDUCTION SCHEME

The proposed scheme, similar to the CSPS and the OCSPS
methods, performs time-domain processing of generating
multiple candidate symbols and selects the one with the lowest
PAPR.

A. Structure of the Proposed Scheme

Fig. 1 illustrates the general transmitter structure of the pro-
posed scheme. As shown in Fig. 1(a), the output symbol of the
IFFT processor is processed by multiple in-phase and quadra-
ture recombination (IQRC) blocks. In each IQRC, the quadra-
ture component with a different offset is (re)combined with the
common in-phase component. Fig. 1(b) shows an IQRC block
in detail, which consists of multiple subunits dubbed joint rota-
tion and offset (JROF). Assume that the total number of IQRC
blocks is , where the th IQRC is denoted by ,

. Each IQRC has JROFs, where the th JROF
is , . Including the original post-IFFT
symbol, different representations of an OFDM symbol
are generated by IQRCs each with JROFs. Among those

generated symbols, the signal with the minimum
peak power (or PAPR) is selected to be transmitted.
At the phase rotation stage, each time domain sample of an

OFDM symbol is rotated in complex constellation by pre-deter-
mined degrees. Although the rotation process does not change

1Note that four time oversampling, i.e., , is enough to represent accu-
rate PAPR [24].
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Fig. 1. The transmitter structure of the proposed scheme. (a) The overall structure equipped with IQRC. (b) The structure of the th IQRC generating multiple
candidate signals .

Fig. 2. The process in the offset stage with the offset, , the
in-phase and the quadrature input vectors,
and , the in-phase and the quadra-
ture output vectors, and

.

the power of the samples, the in-phase and the quadrature am-
plitudes may be changed by rotation. For example, a sample

becomes after counter-clockwise
rotation of degrees, where the amplitude of the quadrature
component is decreased. Note that the goal of the phase rotation
stage is to suppress the peak amplitude in the incoming samples
such that the peak power is reduced eventually.
Although the phase rotation adjusts the amplitude of the

in-phase and the quadrature components, it does not change
the power of the samples. But if it acts jointly with a cyclic
shifting of the components, the peak power can be effectively
reduced. Fig. 2 depicts the cyclic shifting stage, where the
quadrature component of the output samples from the phase
rotation stage is cyclically shifted in time by a certain offset and
then combined with the in-phase component in a mis-aligned
manner. This operation in fact is similar to that of offset-PSK
modulation except the fact that the offset can be a variable.
By cyclically shifting the quadrature component, while the
in-phase component is intact, this stage aims to achieve a

mis-alignment of the in-phase sample with high amplitude and
the quadrature sample with high amplitude.
Consider an OFDM symbol, which is the output of the IFFT

processor, denoted by . Using as the input symbol, each
IQRC block performs JROF subblocks in a boot-strapping
fashion, where JROF-1 is first executed and then JROF-2 is
carried out using the output symbol from the JROF-1, and so
on, which is illustrated in Fig. 1(b). The output symbol from
JROF- in IQRC- is denoted by ,

for . In other words, is the output from JROF-1
for the input , and is the output from JROF-2 for the input

, and so on. In this fashion, is generated after different
JROF processes one after another.
Let denote a function for the JROF- in IQRC- ,

where and denote the angle of the phase rotation and
the offset of the cyclic shifting, respectively. Assuming that the
phases of all the samples in the input symbol are random, or
uniformly distributed between 0 and , we consider to be a
constant value, whereas the offset is variable depending
on and . Based on these, the output symbol from JROF- in
IQRC- can be expressed in a recurrence equation as

(4)

where regardless of . We can rewrite (4) as

(5)

where

, (6)
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is a nested function of with a varying offset .

Since is a complex vector, it can be written as

(7)

where and

represent the in-phase and the
quadrature components, respectively. Substituting (7) into (4),
we can rewrite (4) as

(8)

where denotes the circular permutation matrix
given by

(9)

where and denotes identity matrix and
zero matrix, respectively. Note that the function is a
nonlinear process for a complex input vector.
For notational brevity, we rewrite into a matrix form as

(10)

where and are the in-phase and the quadrature compo-
nents, respectively. We call (10) as a split vector since the real
and the imaginary components are separately expressed in one
column. The matrix corresponding to the function for

is then found as

(11)

where I denotes identity matrix. Although the size of
is , its components are real and nonzero values exist

sparsely and regularly in the matrix, which allows a low com-
putational complexity. Then we can rewrite (4) and (5) as

(12)

where

(13)

is a matrix for the composite function .

TABLE I
THE RANDOM SEQUENCE, , FOR THE OFFSET

Since is generated from in an iterative fashion,

may be statistically correlated with in terms of PAPR. If
more than one candidates look alike, then those candidates will
result in an almost identical PAPR, which degrade the PAPR
reduction performance. Thus, the phase rotation and the offset
should be carefully selected to obtain improved PAPR reduction
performance.
To improve the PAPR reduction performance of the proposed

scheme, we pursue two different steps. First, we select the offset
from randomly generated sequences. Table I shows the

random sequences used in this paper. The offset is ex-
pressed as

(14)

where is the th element of in Table I. Note that randomly
generated sequences can be easily implemented by a pseudo
random sequence generator based on shift registers. Hence, we
assume that both the transmitter and the receiver know upfront
these random sequences generated based on an agreed upon
seed. Since the effects of an offset on the PAPR reduction per-
formance are hard to theoretically analyzed, we show by nu-
merical simulations that the best offset is a random sequence in
Appendix A.
Second, we determine the value of as follows:

(15)

The proof for (15) is provided in Appendix A. From complexity
point of view, this choice of parameters has much advantages.
In the next section we analyze the complexity of the proposed
scheme in more detail.

B. Proposed Scheme With Reduced Complexity

Consider that computational complexity is quantified by the
number of complex multiplications required for the processing.
Using (15), we can simplify (8) as

(16)

which only requires two real additions in order to find from
, while (8) requires a complex multiplication by .

Considering that a scaling factor of is a constant, we can
rewrite (16) as

(17)
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Fig. 3. The transmitter structure of the proposed scheme with reduced complexity. (a) The simplified structure equipped with SIQRC. (b) The structure of the
th SIQRC generating multiple candidate signals .

where the input vector, , and the ini-

tial OFDM symbol, . We can derive that

from (16) and (17). Since the power of becomes
twice as increases by 1, the signal with minimum PAPR
is selected as following:

(18)

where . It is clear from (17) that infinity norm
computations are required as many as the number of the candi-
date symbols. The computed results are scaled down by since

the power of is times larger than that of .
Fig. 3 shows the transmitter structure based on (17) and (18),

where the simplified JROF (SJROF) and the simplified IQRC
(SIQRC) replace the JROF and the IQRC, respectively, to re-
duce the complexity. Similarly, the add. & sub. block is im-
plemented instead of the phase rotation. The selected candidate

symbol, , is scaled down by before transmitting to

create . Thus, it is clear that the scaling is required only once
regardless of the number of candidate symbols.

C. Comparison of Computational Complexity

Since the scaling down process is done only once per
sample after the symbol with minimum PAPR is determined,
the number of such a scaling computation for the proposed
transmitter is in total, which corresponds to complex
multiplications. Furthermore, when is an even number the
scaling computation is a division by a power of 2. Since scaling
by a power of 2 can be simply implemented by shifting the
value in bits, we do not take this into account. Thus, the number
of complex multiplications for the scaling computation turns
out to be .
Table II summarizes the number of complex multiplications

to generate candidate symbols for the proposed scheme, the

TABLE II
NUMBER OF COMPLEX MULTIPLICATIONS TO GENERATE MULTIPLE CANDIDATE
SYMBOLS OF THE CSPS, OCSPS METHODS, AND THE PROPOSED SCHEME

EXCEPT THOSE FOR IFFT OPERATION

TABLE III
NUMBER OF COMPLEX MULTIPLICATIONS INCLUDING INFINITY NORM
COMPUTATIONS WHEN THE NUMBER OF SUBCARRIERS IS 256 AND THE
NUMBER OF CANDIDATE SIGNALS IS 16 AND 64 FOR THE CSPS AND

OCSPS, RESPECTIVELY, I.E., , FOR

CSPS, AND FOR OCSPS

CSPS and the OCSPS methods. In addition, all these schemes
require infinity norm computations to find the best symbol
with respect to the PAPR. Since the number of real multiplica-
tions of one infinity norm is , we can simply know that the
equivalent number of complex multiplications for candidate
symbols is . Table III shows an example for the number
of complex multiplications including the infinity norm com-
putations when . It is clear that the computational com-
plexity of the proposed scheme is much lower than those of the
CSPS and the OCSPS methods.
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Fig. 4. The receiver structure for the TDSC scheme operated in time domain.

IV. RECEIVER STRUCTURE FOR THE PROPOSED SCHEME

In this section, three simple receiver structures for the pro-
posed scheme are introduced. We first examine the system
characteristics of the receiver processing in frequency domain.
Then, we derive the ZF and the MMSE estimators for the
source symbols. In addition, the ML detector for the source
symbols is also derived, since the ML detector blindly decodes
the transmitted signal without SI.

A. System Characteristics

The time domain PAPR reduction schemes such as the time
domain symbol combining (TDSC) [23] or post-IFFT PAPR re-
duction schemes [26], [27] have high receiver complexity due
to an additional IFFT and FFT pair required at the receiver.
Fig. 4 depicts the receiver structure of such schemes. The shaded
blocks, which consists of an IFFT and a FFT, are additional costs
increasing the complexity. Since the proposed scheme is also a
time-domain PAPR reduction scheme, the receiver structure in
Fig. 4 can also be used for the proposed scheme. But, instead,
the proposed scheme can use a very simple structure, where the
shaded blocks can be replaced by only complex mul-
tiplications. Details of the simple receiver structure is provided
in the following.
Let us denote the channel response and the noise vector in

frequency domain by and
, respectively. We assume that the length

of cyclic prefix is long enough to cope with the delay spread of
channel. Then the received signal through the multipath fading
channel is expressed in frequency domain as

(19)

where denotes element-wise multiplication, and is a DFT
matrix given by

...
...

...
. . .

...

(20)
where is a well-known twiddle factor.
Similar to the steps in (5)to (12), the source symbol X is first

expressed as a split vector as

(21)

Likewise, and are defined as and
, respectively. In addition, a DFT matrix is

rephrased as

(22)

and an IFFT matrix can also be easily derived as

(23)

Similarly, the channel matrix is expressed as

(24)

Then we can rewrite (19) as

(25)

where

(26)

We can see from (25) that is a precoding matrix for the
input split vector . It is worth noting that exhibits some
useful properties, which are listed as follows.
Property 1:
(a) consists of four submatrices and each of them is a

sparse matrix called X-matrices. The definition of X-ma-
trix is given in Appendix B.

(b) induce that and share two subcarriers.

(c) is an orthogonal matrix, i.e., .
These properties are proved in Appendix B based on some

properties of circulant matrices and the orthogonal matrices.

B. Zero-Forcing and MMSE Estimation

If the SI is available at the receiver, a simple estimation for
the source symbol can be done by a ZF or an MMSE estimator.
Using the property that is an orthogonal matrix, the ZF
solution is derived as

(27)

where denotes the effective channel matrix given by
. The (27) shows that is obtained by just multiplying

by on the equalized signal . Since each of the four
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submatrices of is an X-matrix, multiplying by re-
quires real multiplications which are equivalent to

complex multiplications. Thus, the ZF estimator can
be implemented with very low complexity.
For the effective channel, the MMSE solution is known as

(28)

where is the inverse of SNR and denotes

. Using the ma-
trix inversion lemma, namely

, and the fact that
is an orthogonal matrix, (28) is simplified as

(29)

where is a diagonal matrix and has the same
structure as in (24). Therefore, can also be computed
with very low complexity.

C. Maximal Likelihood Detection

Most of the conventional PAPR reduction schemes assume
that SI is sent through the dedicated channel in order to help the
receiver decode the transmitted symbols. In practical systems,
however, the SI transmission is not an easy or simple task. An SI
has to be reliably delivered to the receiver every time an OFDM
symbol is transmitted. But the SI can not be included in the reg-
ular OFDM symbol, it may be thus necessary to use a dedicated
channel for the SI if possible, which sacrifices the overall spec-
tral efficiency. Therefore, it is highly desirable from practical
system’s point of view to design a PAPR reduction scheme that
does not need SI. Motivated by this, we design a receiver that
demodulates the transmitted source symbols without SI in the
ML fashion.
Let us denote the set of the JROF index as ,

the set of the IQRC index as and the se-
quence of split constellations as , where

for . The split source symbol,
, is mapped from a constellation such asM-ary quadra-

ture amplitudemodulation (QAM). TheML detectionmetric for
the source symbols is given by

(30)

where , , and are , , and minimizing the ML metric,
respectively.
The complexity for computing (30) is very high since the

minimization is done for the vector with length . However,

if we note the property that makes and share two
subcarriers, we can simplify (30) as

(31)

where , for , is a set of indices which
satisfies the condition that

(32)
for matrices or

(33)
for both vectors and sequences. For , , ,
and in (31) represent

(34a)

(34b)

and

(34c)

respectively. For , , , and in (31) represent

(35a)

(35b)

and

(35c)

respectively. Fig. 5 shows the ML detector structure. We can
find the SI, and , and the best satisfying (31).
If SI is given at the receiver, i.e., both and are known, we

minimize the ML metric with respect to only . Thus, (31)
can be further simplified as

(36)

By well-known near-ML detection methods such as the
sphere decoding, the computational complexity for solving
(31) and (36) can be reduced, although the specific algorithm
of the sphere decoding is out of the scope of this paper.

V. SIMULATION RESULTS

This section presents the simulation results including the
complementary cumulative distribution function (CCDF) of
the PAPR and the BER of the proposed scheme. We assume
that the number of subcarriers is 256, i.e., , and both
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Fig. 5. The proposed ML detector for the transmitted source symbol.

Fig. 6. Performance comparisons among no PAPR reduction, the CSPS
method, the OCSPS method, and the proposed schemes with ,

, and in terms of the CCDF of PAPR when
, the oversampling factor, , and QPSK mapping are used.

the quadrature phase shift keying (QPSK) and the 16-QAM are
used for the OFDM symbols.

A. PAPR Reduction Performance

The PAPR reduction performance is commonly measured by
CCDF for the PAPR reduction schemes. The CCDF presents the
probability that the PAPR of an OFDM symbol is larger than a
given threshold value, which is expressed as

(37)

The PAPR reduction performance of our proposed scheme is
compared with the CSPS and the OCSPS methods since they
also aim at low complexity and high PAPR reduction perfor-
mance. The simulation results are presented in Fig. 6. We con-
sider the cases that the number of candidate symbols are 16
and 64 for the CSPS and the OCSPS methods, respectively,
which are the most superior cases in terms of the CCDF of the
PAPR as presented in [22]. Since the proposed scheme gener-
ates candidates, we consider the cases of ( ,

), and ( , ), which make 17 and 65 candidate
symbols, respectively. Note that the offset is tabulated as
a function of in Table I.

Fig. 7. Performance comparisons among no PAPR reduction, the CSPS
method, the OCSPS method, and the proposed schemes with ,

, , and in terms of the CCDF of the PAPR when
the IFFT size , the oversampling factor , and QPSK mapping
are used.

Fig. 6 compares the CCDF of the PAPR of the proposed
scheme when and against those of the CSPS
and the OCSPS methods when the oversampling factor is 4, i.e.,

. The proposed scheme with and
outperforms the CSPS and the OCSPS methods by far. For a
fair comparison with the CSPS and the OCSPS methods, we
also plotted the proposed scheme with and
(see dotted lines). In those cases, the original OFDM symbol
is excluded from the candidates. Interestingly, the performance
results show that excluding the original OFDM symbol rarely
affects the performance. In other words, the proposed schemes
with and still overwhelm the conventional
methods. In Fig. 7, the CCDFs of the PAPRs are depicted when
the oversampling factor is 1, i.e., . This shows the same
order of curves as those in Fig. 6.

B. System Information Detection and BER Performance

The proposed ML detector needs to detect SIs accurately,
which otherwise can not decode the transmitted OFDM sym-
bols. Thus, it is important to examine the rate of correct detec-
tion of SI. Assume that the systems undergo Rayleigh multipath
fading channel with 10 channel taps, each of which is complex
Gaussian distributed, and the channel has unit power in total.We
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Fig. 8. Probability that SI is correctly decided among the proposed schemes
with ( , ), and ( , ) over the Rayleigh 10-tap frequency
selective channel when the IFFT size, , and QPSK mapping are used
versus average SNR [dB].

Fig. 9. Bit error rate performances of the unprocessed OFDM transmission and
the proposed scheme for theMLdetector, the hard decisionswith theMMSE and
the ZF estimators with over the Rayleigh 10-tap frequency selective
channel when the IFFT size, versus average SNR [dB]. Both the
QSPK and the 16-QAM are used.

also assume that cyclic prefix is larger than the channel length
(delay spread) and the channel state information (CSI) is fully
available at the receiver. Fig. 8 shows that the proposed scheme
detects SIs by the ML metric in (31) with high accuracy when
the average SNR is higher than 4 dB.
Based on the assumptions on the channel, BER performances

are evaluated for various receiver structures when both the
QPSK and the 16-QAM are used as a subcarrier modulation.
Fig. 9 plots the BER performances for these various receivers.
For comparisons, the BER performance of the OFDM system
with no PAPR reduction is also plotted where ZF equaliza-
tion is assumed. The BER performances of the ZF and the
MMSE estimator with hard decision are nearly the same as
that of OFDM systems with no PAPR reduction scheme for the
16-QAM, but the MMSE estimator for the QPSK shows 1.0 dB

1.5 dB superior BER performance to the no PAPR reduction
scheme. The ML detector outperforms by far both the ZF and
the MMSE estimators with hard decision.
The reason why the ML detector outperforms the other esti-

mators is that two source samples in the original OFDM symbol
share two subcarriers. In other words, two samples are loaded to
the corresponding two subcarriers, which mitigates the adverse
effect of the frequency selectivity. In both CSPS and OCSPS
schemes, the PAPR reduction processes do not affect the BER
performances since they are based on PTS scheme. Thus, we do
not consider BERs of both CSPS and OCSPS schemes.
Since the purpose of the PAPR reduction is to avoid the signal

distortion after the signal is passed through HPA, in this paper,
we consider the nonlinear effects of HPA on the BER perfor-
mance of our proposed scheme. As a HPA model, we use the
Rapp’s formula for the solid state power amplifier (SSPA) that
is given as [28]

(38)

where , , , and are the input amplitude, the output
amplitude, the saturating amplitude, and an integer, respec-
tively. The nonlinear distortion is characterized by the input
back-off (IBO) defined as

(39)

where denotes the average input power.
The simulated BER performances when HPA is used at

the transmitter are shown in Fig. 10. We consider the both
the Rayleigh and the AWGN channel. In both the channels,
the BER performances of the proposed scheme are much less
degraded than the OFDM transmission with no PAPR reduc-
tion, since the lowered peak power prevents significant signal
distortion.

VI. CONCLUSION

This paper proposes a novel PAPR reduction schemewith low
complexity at the transmitter. The proposed scheme requires
only a single IFFT processor at the transmitter since the can-
didate symbol generation and selection process are all done in
time-domain. In addition, it requires less computational com-
plexity than the conventional methods. More importantly, the
proposed scheme offers far superior performance to the conven-
tional methods, such as CSPS andOCSPS, in terms of the CCDF
of the PAPR.
The ML detector for the transmitted source symbols, which

do not require the SI at the receiver, were derived. The simple
ZF and the MMSE estimators for the transmitted source sym-
bols, which are available when the SI is given at the receiver,
were also derived. The ML detector shows the better perfor-
mance than the hard decisions with ZF, MMSE estimators and
the unprocessed OFDM symbol in terms of BER. The hard deci-
sions with the ZF estimator shows nearly the same performance
as the case of the unprocessed OFDM transmission and the hard
decision with MMSE estimator shows 1.0–1.5 dB superior per-
formance to the ZF case.
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Fig. 10. Bit error rate performance of the proposed scheme over (a) AWGN channel and (b) Rayleigh 10-tap frequency selective channel when SSPA with
(or 8 dB) and is equipped in the transmitter.

APPENDIX A

Equation (15) is proved as follows. For the notation
brevity, we use instead of and abbreviate and

as and , respectively. Suppose an OFDM symbol,
which is the output of the IFFT processor, is written as

. Using (8), the candidate
symbol from the first JROF is given as

(40)

where is the sample index and is the
sample offset in the quadrature component for the first JROF.
Taking this as the input, the candidate symbol from the second
JROF is obtained as

(41)

where is the quadrature sample offset in the second JROF.
Similarly, the output from the third JROF is written as

(42)

In the same manner, the candidate symbol from the lth JROF
can be generalized as

(43)

where is a set of sample indices and consists of a sum of all
possible combinations of the elements in ;
the weighting factors , , , and are products of si-
nusoidal functions. For example, in the case of ,

and , which results in
. Thus, we can rewrite

(42) as

(44)

where , , , and .
We can also easily find , , and by the same manner.
Given the fact that the samples in an output OFDM symbol

exhibit Gaussian-like distribution, we can regard as a
weighted sum of Gaussian random variables. In order that

is generated from all of and for with the
same weighting factors, the absolute values of them should
be the same. For this condition, should satisfy the equation

where the solutions are . Without
loss of generality, we choose .
In order to show that a random sequence improves the PAPR

reduction performance of the proposed scheme, we consider
three different types of phase rotations and offsets. For the phase
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Fig. 11. Performance comparisons among the various phase rotation and the
offset with , in terms of the CCDF of the PAPR when the IFFT
size , the oversampling factor , and QPSK mapping are used.

rotation, and random phases are considered as well as .
For the offset, constant offset and linearly increasing offset are
considered as well as the random offset. The offset is ex-
pressed as

(45)

for the constant offset

(46)

for the linearly increasing offset.
Fig. 11 shows the simulation results, where the phase rotation

of and the random offset work together to provide the best
performance.

APPENDIX B
DEFINITION OF THE X-MATRIX

Definition 1: Let A be an square matrix where is
an even number. A is an X-matrix if it follows
(a) For the th column, the nonzeros values are located only

at the th row and th row, for .

(b) Only (1,1) component of A can be a nonzero value at the
first row and the first column.

The X-matrix, denoted as , is given at the bottom of the
page, where is entry of . Since the nonzeros values
are on the shape of alphabet X, we name these forms of matrices
X-matrix.
We can easily find by basic matrix calculations that X-ma-

trices follow the lemma.
Lemma 1: Let A and B be X-matrices.
(a) is an X-matrix, if A is an X-matrix;
(b) is an X-matrix;
(c) AB is an X-matrix.

APPENDIX C
PROOF OF PROPERTY

Proof: consists of four submatrices and each of them
is a sparse matrix called X-matrices.
As shown in (11), consists of four submatrices and

all of them are circulant matrices. Some properties of circulant
matrices are given in Theorem 1 and 2 [29].
Theorem 1: Let A and B be circulant matrices.
(a) for any scalar and , is circulant;
(b) for any positive integer is circulant,
(c) is circulant, if A is circulant;
(d) is circulant.
Theorem 2: Let A be the circulant matrices

. Then

(47)

where , ,
and are the solutions to the polynomial equation

; that is, , where .

It can be easily shown that the four submatrices of are
circulant by the definition of in (13) and Theorem 1. If we
apply Theorem 2 to each submatrix of , it can be rewritten
as

(48)

...

...
...

. . .
... . .

. ...
...

...
...

...
...

...
... . .

. ...
. . .

...
...
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where , , , and are eigenvalue matrices of
the four submatrices of , respectively. Substituting (22) and
(48) into (26), can be found as

(49)

where

(50a)

(50b)

(50c)

(50d)

On the other hand, the columns of and in
(50) are discrete cosine and sine waveforms respectively, which
can be expressed as

(51)

where . The th column of
in (50), , is the IFFT result of ,
where only both th and ( )th entries of
have nonzero values. The same result can be found on

. This is a well-known result in that the
inverse Fourier transform of a sinusoidal waveform produces
two impulses at the symmetrical frequency positions. There-
fore, we can conclude that both and
are X-matrices. We can also induce based on the Lemma 1-(a)
that both and are X-matrices, since
they are Hermitians of and , respec-
tively. Since , in (50) are sum of sequential

multiplication of X-matrices, it is induced that is also an
X-matrix from the Lemma 1. Therefore, the four submatrices
of are X-matrices.

Proof: induce that and share two
subcarriers.

Let be . Then can be
expressed as

(52)

where is a split vector which satisfies that
. We

can rewrite (52) as

(53)
Using the fact that are X-matrices, we can
derive that the th and the th entries of Z as follows. For

(54a)

and

(54b)

where is the entry of 2. There-
fore, we have proved from (54) that two source symbols and

share two subcarriers and .

Proof: is an orthogonal matrix, i.e., .
Using the definition of the JROF process, the inverse matrix

of in (11) is easily found as

(55)

which satisfies . If we note that product of

orthogonal matrices is also orthogonal, it is induced that is
orthogonal matrix from (13). Therefore, we can see from (26)
that is an orthogonal matrix.

REFERENCES

[1] R. Chang and R. Gibby, “A theoretical study of performance of an
orthogonal multiplexing data transmission scheme,” IEEE Trans.
Commun. Technol., vol. 16, no. 4, pp. 529–540, Aug. 1968.

[2] S. Weinstein and P. Ebert, “Data transmission by frequency-division
multiplexing using the discrete Fourier transform,” IEEE Trans.
Commun. Technol., vol. 19, no. 5, pp. 628–634, Oct. 1971.

2For , both indices in , , and are omitted for notation brevity.



EOM et al.: LOW-COMPLEXITY PAPR REDUCTION SCHEME 3669

[3] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel
using orthogonal frequency division multiplexing,” IEEE Trans.
Commun., vol. 33, no. 7, pp. 665–675, Jul. 1985.

[4] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio re-
duction techniques for OFDM signals,” IEEE Trans. Broadcast., vol.
54, no. 2, pp. 257–268, Jun. 2008.

[5] R. O’Neill and L. Lopes, “Envelope variations and spectral splatter in
clipped multicarrier signals,” in Proc. IEEE Int. Symp. Pers. Indoor
and Mobile Radio Commun. (PIMRC), Toronto, Canada, Sep. 1995,
pp. 71–75.

[6] X. Li and L. J. Cimini, Jr., “Effects of clipping and filtering on the per-
formance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133,
May 1998.

[7] A. Jones, T. Wilkinson, and S. Barton, “Block coding scheme for re-
duction of peak to mean envelope power ratio of multicarrier transmis-
sion schemes,” Electron. Lett., vol. 30, no. 25, pp. 2098–2099, Dec.
1994.

[8] J. Davis and J. Jedwab, “Peak-to-mean power control and error correc-
tion for OFDM transmission using Golay sequences and Reed-Muller
codes,” Electron. Lett., vol. 33, no. 4, pp. 267–268, Feb. 1997.

[9] K. Paterson, “Generalized Reed-Muller codes and power control in
OFDM modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp.
104–120, Jan. 2000.

[10] J. Tellado, “Peak to average power reduction in multicarrier modula-
tion,” Ph.D. dissertation, Stanford Univ, Stanford, CA, 1999.

[11] B.Krongold andD. Jones, “PAR reduction in OFDMvia active constel-
lation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268,
Sep. 2003.

[12] R. Bauml, R. Fischer, and J. Huber, “Reducing the peak-to-average
power ratio of multicarrier modulation by selected mapping,” Electron.
Lett., vol. 32, no. 22, pp. 2056–2057, Oct. 1996.

[13] S. Muller and J. Huber, “OFDM with reduced peak-to-average power
ratio by optimum combination of partial transmit sequences,”Electron.
Lett., vol. 33, no. 5, pp. 368–369, Feb. 1997.

[14] S. Muller and J. Huber, “A novel peak power reduction scheme
for OFDM,” in Proc. IEEE Int. Symp. Pers. Indoor and Mobile
Radio Commun. (PIMRC), Helsinki, Finland, Sep. 1997, vol. 3, pp.
1090–1094.

[15] L. J. Cimini, Jr. and N. Sollenberger, “Peak-to-average power ratio re-
duction of an OFDM signal using partial transmit sequences,” IEEE
Commun. Lett., vol. 4, no. 3, pp. 86–88, Mar. 2000.

[16] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a
reduced complexity PTS technique,” IEEE Signal Process. Lett., vol.
11, no. 11, pp. 887–890, Nov. 2004.

[17] A. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction
of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol.
36, no. 14, pp. 1226–1228, Jul. 2000.

[18] T. Jiang, W. Xiang, P. Richardson, J. Guo, and G. Zhu, “PAPR re-
duction of OFDM signals using partial transmit sequences with low
computational complexity,” IEEE Trans. Broadcast., vol. 53, no. 3, pp.
719–724, Sep. 2007.

[19] H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-
power reduction without explicit side information,” IEEE Commun.
Lett., vol. 5, no. 6, pp. 239–241, Jun. 2001.

[20] Z. Du, N. Beaulieu, and J. Zhu, “Selective time-domain filtering for
reduced-complexity PAPR reduction in OFDM,” IEEE Trans. Veh.
Technol., vol. 58, no. 3, pp. 1170–1176, Mar. 2009.

[21] L. Guan, T. Jiang, D. Qu, and Y. Zhou, “Joint channel estimation
and PTS to reduce peak-to-average-power radio in OFDM systems
without side information,” IEEE Signal Process. Lett., vol. 17, no. 10,
pp. 883–886, Oct. 2010.

[22] G. Lu, P. Wu, and D. Aronsson, “Peak-to-average power ratio re-
duction in OFDM using cyclically shifted phase sequences,” IET
Commun., vol. 1, no. 6, pp. 1146–1151, Dec. 2007.

[23] E. Alsusa and L. Yang, “A low-complexity time-domain linear symbol
combining technique for PAPR reduction in OFDM systems,” IEEE
Trans. Signal Process., vol. 56, no. 10, pp. 4844–4855, Oct. 2008.

[24] C. Tellambura, “Computation of the continuous-time PAR of an OFDM
signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp.
185–187, May 2001.

[25] C. Li, T. Jiang, Y. Zhou, and H. Li, “A novel constellation reshaping
method for PAPR reduction of OFDM signals,” IEEE Trans. Signal
Process., vol. 59, no. 6, pp. 2710–2719, Jun. 2011.

[26] L. Yang and E. Alsusa, “Novel low-complexity post-IFFT PAPR reduc-
tion technique for OFDM systems,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Las Vegas, NV, Apr. 2006, pp. 2006–2011.

[27] L. Yang and E. Alsusa, “Novel low-complexity post-IFFT PAPR re-
duction technique by utilising amplitude transforming for OFDM sys-
tems,” in Proc. IEEE Wireless Commun. Netw. Conference (WCNC),
Kowloon, Mar. 2007, pp. 1339–1343.

[28] C. Rapp, “Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for
a digital sound broadcasting system,” in Proc. 2nd Eur. Conf. Satellite
Commun., Liege, Belgium, Oct. 1991, pp. 179–184.

[29] J. R. Schott, Matrix Analysis for Statistics, 2nd ed. New York: Wiley,
2004.

Seung-Sik Eom (S’06) received the B.S. and M.S.
degrees in electrical engineering from Korea Univer-
sity, Seoul, in 2005 and 2007, respectively. He is cur-
rently working toward the Ph.D. degree at the School
of Electrical Engineering, Korea University. His cur-
rent research interest is signal processing in OFDM
systems including PAPR reduction schemes with low
complexity.

Haewoon Nam (S’99–M’07–SM’11) received the
B.S. degree in electrical communication engineering
from Hanyang University, Seoul, Korea, in 1997,
the M.S. degree in electrical engineering from Seoul
National University, Seoul, Korea, in 1999, and the
Ph.D. degree in electrical and computer engineering
from the University of Texas at Austin in 2006.
From February 1999 to July 2002, he was with

Samsung Electronics, where he was engaged in the
design and development of CDMA and GSM/GPRS
baseband modem processors. In summer 2003, he

was with the IBM T.J. Watson Research Center, Yorktown Heights, NY, and
in fall 2005, he was with Freescale Semiconductor. His industry experience
also includes work at Samsung Advanced Institute of Technology. In October
2006, he joined the Mobile Devices Technology Office, Motorola Inc., Austin,
where he was involved in algorithm design and development of 3GPP LTE
modem processor. Later in 2010, he was with Apple Inc., Cupertino, CA,
where he worked on research and development of next-generation smart mobile
systems. Since March 2011, he has been with the department of electronics
and communication engineering, Hanyang University, where he is an Assistant
Professor.
He is a recipient of the Korean government overseas scholarship in the field

of electrical engineering.

Young-Chai Ko (S’97–M’01–SM’06) received the
B.Sc. degree in electrical and telecommunication
engineering from the Hanyang University, Seoul,
Korea, and the M.S.E.E. degree and the Ph.D. degree
in electrical engineering from the University of Min-
nesota, Minneapolis, in 1999 and 2001, respectively.
In March 2001, he joined Texas Instruments, Inc.,

San Diego Wireless Center, San Diego, CA, where
he worked on WCDMA MODEM system design.
Since March 2004, he has been with School of
Electrical Engineering at Korea University where he

is currently an Associate Professor and the Director of High-Speed Human In-
terface Center (H2IC) supported by Samsung Electro-Mechanics. His research
focus is on the performance analysis and the design of wireless communication
systems in the physical layer.


