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Abstract: This paper proposes a new test method of detecting the presence of impulsive noise
based on a complementary cumulative density function (CCDF). Impulsive noise severely degrades
performance of communication systems and the conventional Kolmogorov–Smirnov (K–S) test may
not perform well, because the test does not consider the characteristics of impulsive noise. In order to
detect the presence of impulsive noise reliably, the CCDF of measurement samples is analyzed and
compared with the CCDF of additive white Gaussian noise to find the difference between those
CCDFs. Due to the nature of heavy-tails in impulsive noise, only the maximum difference may
not be sufficient for the accurate detection of impulsive noise. Therefore, the proposed method
applies the test hypothesis using the weighted sum of all the differences between those CCDFs.
Simulation results justify that the proposed test is more robust and provides lower miss detection
probability than the K–S test in the presence of impulsive noise.
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1. Introduction

Most existing digital communication systems are designed to perform optimally in an additive
white Gaussian noise (AWGN) environment, but there are some environments where impulsive noise
is dominant [1,2]. For example, the performance of the vehicular network in the presence of a cellular
network is limited by impulsive noise [3,4]. Since the performance of conventional communication
systems is severely degraded in such an environment, detecting the presence of impulsive noise is an
important task in most communication systems [5]. Upon the detection of impulsive noise, a receiver
can execute a special filter, such as a non-linearity pre-processor [6,7] which is designed based on the
characteristics of impulsive noise, to circumvent the impulsiveness of the noise and further achieve the
optimal performance in an impulsive noise environment [8,9].

Various studies [10–17] that considered impulsive noise, including power line
communications [10] and environments such as a underwater environment [11] in their conclusion. A
noise detection method was researched [12–17] in an environment with impulsive noise. A previous
study [12] reported the actual disturbances encountered by devices operating in one of the bands
of interest during normal use. Time-domain measurement procedures are proposed to measure
radiated transient interference, which is a source of distortion that offers performance degradation of
wireless digital communication systems [13–15]. Because transient electromagnetic interference has
an enormous impact on the performance of mobile communications on railways, the analysis tool
of electromagnetic interference is presented based on a computation of minima so that the power
ratio between transmitted signal and interference is smaller than a certain threshold [16,17], but it is
difficult to adapt this scheme to a practical system since the threshold is numerically calculated.
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Kolmogorov–Smirnov (K–S) test is a well-known normality test, where it quantifies the distance
between the empirical cumulative distribution function (CDF) of observed samples and the reference
distribution [18,19]. The K–S test is a non-parametric method to measure the goodness of a fit and the
K–S detector does not require prior knowledge of the signal. To determine the noise environment and
whether it is an AWGN or not, it may be suitable to employ the K–S test, but unfortunately, this test
does not offer satisfactory classification about the performance when impulsive noise is present because
the test does not consider the characteristics of impulsive noise. In addition, the K–S test is used for
various purposes in the literature as well. In a previous study [20], a sequential K–S test was used to
achieve fast spectrum sensing to identify the unused spectrum to give to an unlicensed user. The test
is also used in modulation classification performed at a receiver based on received samples before
demodulation [18]. Ref. [21] proposes a signal to noise ratio (SNR) estimator based on the K–S test
and binary search scheme that reduces a large number of additions. Furthermore, the K–S test is used
in a multiple-input multiple-output (MIMO) system for blind identification of spatial multiplexing
and Alamouti space–time block code based on the correlation property of adjacent samples in [19]. In
a previous study [22], the performance of normality tests for non-normal data with the various tests
are compared. Their simulation results indicate that the K–S test is the most powerful test when the
sample size is large (>100). However, the simulation results do not prove that the performance of
K–S test is optimized for the classification of impulsive noise. Because even though the probability
density of impulsive noise has heavy-tails characteristics, the K–S test utilizes only the maximum
difference, not the heavy-tails characteristics of impulsive noise. If a test cannot classify the noise
model correctly, the communication strategy may be incorrect; this will cause a severe degradation in
communication performance.

Motivated by the aforementioned issues, this paper proposes a method to detect the presence
of impulsive noise. From the received signal, the empirical complementary cumulative distribution
function (CCDF) of the amplitude is computed, which explicitly shows the characteristics of impulsive
noise. For comparisons, the CCDF of the amplitude under AWGN is computed in advance as a
reference in advance. In order to detect the presence of impulsive noise reliably, the proposed
method compares the empirical CCDF of measurement samples and the reference CCDF of AWGN
to find the difference between those CCDFs. Due to the nature of heavy-tails in impulsive noise,
only the maximum difference may not be sufficient for the accurate detection of impulsive noise.
Thus, the proposed method applies the test hypothesis using the weighted sum of all the differences
between those CCDFs. Middleton class A noise and symmetric α stable (SαS) noise models are
considered for the models of impulsive noise. Simulation results show that the proposed test provides
a lower detection error rate than the conventional K–S test.

This paper is organized as follows. In Section 2.1, we present the impulsive noise and signal
models. In Section 3, we briefly introduces the K–S test and hypothesises for the test. In Section 4,
we present the approximated distribution of the difference mentioned above on a certain amplitude,
then the test is proposed by examining the distributions about observed amplitudes. In Section 6, the
simulation results are presented in various environments. Finally, we conclude this paper with a brief
summary, which is presented in Section 7.

2. Noise Models and Motivation for Noise Classification

2.1. Impulsive Noise and Received Signal Models

Consider a receiver with a received signal that only consists of noise samples. The l-th received
sample at the receiver is written as

y(l) = w(l), l = 1, · · · , L, (1)

where w(l) is the complex-valued noise sample at time l and L is the total number of the received
samples by measurements. The noise samples {w(1), · · · , w(L)} are assumed to be additive white
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noise and their distribution is either Gaussian noise or impulsive noise. Among various impulsive
noise models, Middleton class A noise and SαS noise models are widely accepted in the literature
because their models are derived from the real physical mechanisms that generate disturbance in
communication systems and agree well with physical phenomena [1,2].

The probability density function (PDF) of the instantaneous amplitude of Middleton class A noise
is given as [1]

fZ(z) =
∞

∑
m=0

e−A Am

m!
1√

2πσ2
m

e
− z2

2σ2
m , (2)

where the variance σ2
m is expressed as

σ2
m = σ2

m
A + Γ
1 + Γ

, (3)

where σ2 is the average power of the noise. The parameter A is denoted as the impulsive index,
which is the average number of m concerning the probability e−A Am

m! [23]. Γ is called the Gaussian
factor which is the ratio of the intensity of the independent Gaussian components and that of
non-Gaussian components.

The other noise model is SαS noise model. A characteristic function of SαS noise is defined as

ΦZ(jw) = e−|λw|α+jδw, (4)

where λ is the scale parameter larger than 0, δ is the location parameter with −∞ < δ < ∞, and α

is the shape parameter with 0 < α < 2. Note that the PDF of the SαS noise is calculated by inverse
Fourier transform, since the PDF does not have a closed form.

2.2. Motivation for Noise Classification

As mentioned earlier, noise classification (or an identification of noise statistics) of the surrounding
environment is of prime importance for communication systems, since the optimal receiver design
is based on the noise statistics to achieve optimal error performance. Note that most existing
communication systems are designed to achieve optimal performance in an AWGN environment and
those existing systems suffer significant performance loss in another noise environment.

Figure 1 shows a bit error rate (BER) performances of the conventional receiver with a binary
phase-shift keying (BPSK) in impulsive noise and AWGN. In the case of an AWGN environment,
the BER graph of BPSK is exponentially decreased as an SNR increases. When impulsive noise is
present, however, the BER graph of BPSK shows a plateau due to the impulsive component. This
clearly indicates that there is a performance loss for the conventional receiver when impulsive noise is
present. Thus, a receiver needs to first classify the noise model in the given environment as accurately
as possible in order to avoid or mitigate such performance loss. For this reason, it is essential to
classify the noise model to decide a valid strategy since the communication method depends on the
noise environment.
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Figure 1. BER of BPSK in various noise environment such as AWGN, Middleton class A noise and SαS
noise. Middleton class A noise parameters are set to (A, Γ) = (0.01, 5) and SαS noise parameter is set
to α = 1.8.

3. Conventional Kolmogorov–Smirnov Test

The K–S test is a non-parametric test based on the maximum difference between an empirical
and a hypothetical cumulative distribution [24]. Failing to reject the null hypothesis shows that two
data populations are drawn from the same distribution to a certain required level of significance.
On the other hand, accepting the alternative hypothesis that they are from different distributions can
be used. The hypotheses are stated as

H0 : F1 = F0

H1 : F1 6= F0,
(5)

where F0 is a hypothesized CDF and F1 is an empirical CDF of the amplitude of received samples.
Here, the hypotheses H0 and H1 are stated as a set of Gaussian amplitudes and a set of non-Gaussian
amplitudes, respectively. The theoretical CDF of AWGN amplitude for the K–S test is computed as

F0(t) = P(w < t) =
∫ t

0

w
2σ2

z
e
− w2

2σ2
z dw = 1− e

− t2

2σ2
z , (6)

where σ2
z = N0

2 and N0 is a complex noise power. In the K–S test, the largest absolute difference
between the empirical and the hypothesized CDFs is used as the goodness-of-fit statistic, which is
given by

D = sup
0≤t<∞

|F1(t)− F0(t)|, (7)

where F1(x) is the value of the empirical CDF evaluated at x. For practical implementation with N
measurement samples, where t1, . . . , tN are the amplitudes of those samples in ascending order,
the difference between the empirical and the hypothesized CDFs for practical environments is
computed as

D̂ = max
1≤i≤N

|F1(ti)− F0(ti)|. (8)
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In addition, an empirical CDF from the measurement samples is computed as

F1(t) =
1
N

N

∑
i=1

I(ti ≤ t), (9)

where I(·) is an indicator function that gives one if the condition is true for a sample, and zero otherwise
and ti is the amplitude of the received sample in ascending order. The hypothesis H0 is rejected at a
significance level γ once P(D > D̂) < γ, where P(D > D̂) is given as [18]

P(D > D̂) = Q([
√

N + 0.12 +
0.11√

N
]D̂), (10)

where Q(d) = 2 ∑∞
m=1(−1)m−1e−2m2d2

. [24] has demonstrated that Q(d) is convergent with thousands
of m terms that may have large complexity for small error.

For detecting the presence of impulsive noise, the hypotheses in (5) are stated as

H0 : {t1, · · · , tN} is a set of AWGN amplitudes,

H1 : {t1, · · · , tN} is not a set of AWGN amplitudes,
(11)

4. Proposed Test

Although the K–S test is a common method to measure the goodness of a fit, [25] mentions that a
test using K–S statistic to impulsive noise samples have poor performance since K–S statistic does not
consider the characteristics of non-normal samples. This section proposes a test to detect the presence
of impulsive noise considering the characteristics of impulsive noise. First, the idea behind the design
of the proposed test is discussed. Then, an approximation of the threshold for the test hypothesis to
satisfy target false alarm probability is presented.

4.1. Design of the Proposed Test

The discriminating feature for detecting the presence of impulsive noise is CCDF of the received
signals are normalized amplitude since the bell-curve density of impulsive noise has a heavy-tails.
The CCDF of the normalized amplitude of the received signal is compared with the reference CCDF
of AWGN. Let us consider a measurement campaign that observes N noise measurement samples,
where t1, · · · , tN are the amplitudes of those samples in ascending order, i.e., ti is the i-th smallest
amplitude of the measurement samples. Since the value of ti, the i-th smallest amplitude of the
measurement samples, may not be the same for every measurement campaign, ti can be considered
as a discrete random variable. Let t̂i denote the actual value of the i-th smallest sample from a
measurement campaign. Figure 2 illustrates the theoretical CCDF of complex Gaussian distribution
and the empirical CCDF, which consists of those measurement samples with unknown distribution.
The empirical CCDF is a decreasing step function that has the same number of steps as the number of
samples because the number of measurement samples is finite. Di is the absolute difference between
the two CCDFs for ti and is can be represented as

Di = |{1− F1(ti)} − {1− F0(ti)}| = |F0(ti)− F1(ti)|, (12)

which is a random variable since ti is a random variable. When measurement samples are available,
D̂i is defined as the absolute value of the difference at t̂i and is computed as

D̂i = |F0(t̂i)− F1(t̂i)| =

∣∣∣∣∣∣1− e
−

t̂2i
2σ2

z − i
N

∣∣∣∣∣∣ , (13)
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where F0(t̂i) is computed by substituting t into t̂i in (6) and F1(t̂i) is given as i
N . That is, all the values

of D̂i are obtained by (13) where t̂1, · · · , t̂N−1 in ascending order. Since the empirical CCDF on t̂N
equals to zero, t̂N is not considered. Comparisons are carried out between the received signals CCDF
and reference CCDF as shown in Figure 2. Unlike the conventional K–S test, the proposed test method
considers all the values of D̂i between the CCDFs in order to detect the presence of impulsive noise
reliably. In addition, we employ a weighted sum of the probabilities of differences between the CCDFs
for the proposed test since they are not equally weighted due to the characteristic of heavy-tails in
impulsive noise.

To sum up, the proposed test is defined as

S =
N−1

∑
i=1

Piwi
H0
≶
H1

1− γ, (14)

where γ is the significance level, Pi and wi will be discussed below. Finally, an algorithm based on (14)
will be depicted. Firstly, Pi in (14) is computed as

Pi = ∑
k∈K

Pi,k, (15)

where Pi,k is the discrete probability density function of Di and k is the index of the discrete values of
Di. K is the set of those indices that satisfy the following condition:

K = {k | Di(k) > D̂i}. (16)

Pi,k can be obtained by k samples with the probability F0(t̂i), and N − k samples with the
probability 1 − F0(t̂i), and the number of selecting k samples with the probability F0(t̂i) among
N samples is (N

k ). Therefore, the probability Pi,k is computed as

Pi,k =

(
N
k

)
F0(t̂i)

k(1− F0(t̂i))
N−k. (17)

Figure 3 shows the empirical and theoretical probabilities of Pi,k where t̂i = 0.45 and ten samples
are considered for the simulation above. It is clearly observed that the probabilities are well-matched.
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Figure 2. Plotting empirical CCDF with unknown distribution, theoretical CCDFs of complex Gaussian
distribution and the differences D̂1, D̂2, · · · , D̂N−1 between them on t̂1, t̂2, · · · , t̂N−1 for the proposed
test. N is the number of the received samples. F0(t̂i) is the theoretical CCDF on t̂i under the hypothesis.
D̂i is the differences between empirical and theoretical CCDFs on t̂i.
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Figure 3. Plotting empirical probability Pi,k with complex Gaussian distributed samples and theoretical
probability by (17) on t̂i. t̂i is 0.45 and F0(t̂i) = 0.8167. For simulation, N equals to 10.

5. Computation of Weight

As mentioned in the first section, the probabilities of the differences between the two CCDFs are
not equally weighted to determine the presence of impulsive noise. Unlike the conventional K–S test,
it is very important to give different weights for all of the received samples according to the difference
in CCDF in our proposed algorithm. Therefore, it is significant to capture the CCDF difference
more clearly between noise models. Impulsive noise is characterized by heavy-tails, which shows
non-linearity in log(log(x)) and log scales. Whereas, AWGN is shown as linearity in log(log(x)) scales.
Thus, we use a CCDF of log(log(x)) scale and log scale to calculate the weights using these differences.
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The weight for the proposed test is computed based on distributions of the noise. There are
two noise models in terms of the distributions: Middleton class A noise and SαS noise models.
Thus, we introduce the two weights for the impulsive noise models, respectively. First, Middleton
class A noise model is considered. Let us assume that the parameters of noise model are not estimated,
because the parameter estimation is carried out after detecting the presence of impulsive noise.
Without the values of the parameters, it is impossible to do an exact calculation of the weight.
Thus, a graphical approach of Middleton class A noise distribution is used based on the characteristics.
Figure 4a illustrates CCDFs for a Middleton class A noise model and AWGN. The scale of the y-axis in
Figure 4a shows an obvious difference between CCDFs of Middleton class A noise model and AWGN
since the background component of Middleton class A noise and AWGN are illustrated as a straight
line in the scale of y-axis in Figure 4a. The straight line can be used in order to compute a weight.
Thus, the weight wi,log−log for Pi becomes

wi,log−log =

∣∣∣log10(
log10(F1(t̂i))

log10(F0(t̂i))
)
∣∣∣

∑N−1
i=1

∣∣∣log10(
log10(F1(t̂i))

log10(F0(t̂i))
)
∣∣∣ , (18)
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Figure 4. Illustration of theoretical CCDF of AWGN and empirical CCDFs of impulsive noise models.
(a) Theoretical log10(CCDF)s of AWGN and Middleton class A noise with (A, Γ) = (0.1, 1× 10−3) and
(0.35, 1× 10−2) on a log scale. (b) Theoretical CCDF of AWGN and empirical CCDFs of SαS noise with
(α, λ, δ) = (1,1,0) and (0.5,2,0) on a log scale.

Second, let us consider SαS noise model. Figure 4b shows CCDFs for SαS noise and AWGN.
The CCDFs of SαS noise are plotted on log scale due to the fact that a slope of the CCDF is constant
whereas the CCDF of AWGN is sharply decreasing in Figure 4b. Once the impulsiveness gets stronger,
the linear curve with a constant slope of the CCDF gets higher. Owing to the linear curve in large
amplitude, the logarithm function is suitable for giving more weight Pi on a large amplitude due to
the extremely low CCDF of AWGN. Since the difference of CCDFs between AWGN and SαS noise is
remarkable on log-scale, for SαS noise, the weight of Pi is

wi,log =

∣∣log10(F1(t̂i))− log10(F0(t̂i))
∣∣

∑N−1
i=1

∣∣log10(F1(t̂i))− log10(F0(t̂i))
∣∣ . (19)

By substituting (18) and (19) into wi in (14), weight sums Slog−log and Slog respectively
corresponding to wi,log−log and wi,log are computed. Then, the hypothesis in (11) is determined
by computing with 1 − γ. For detecting the presence of impulsive noise, two weight sums are
simultaneously used.

Finally, based on (14), (15), (18), and (19), the proposed algorithm for the test is stated in Algorithm 1.
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Algorithm 1 Proposed test

1 initialization D⇐ {D̂1, ·, D̂N−1};
2 for i = 1 to N − 1 do
3 Pi ⇐ ∑k∈K Pi,k, where K = {k|Di(k) > D̂i} and Pi,k is in (17).
4 end
5 Slog = ∑N−1

i=1 Piwi,log

6 Slog−log = ∑N−1
i=1 Piwi,log−log

7 if Slog < 1− γ and Slog−log < 1− γ then
8 accept H0

9 else
10 accept H1

11 end

In Algorithm 1, D is a set of D̂i. The procedure is briefly explained along with the line numbers
corresponding to each step as follows:

1. Initialization. Before the test, all CCDF differences D̂1, · · · , D̂N−1 on t̂1, · · · , t̂N−1 are computed
(line 1).

2. Pi can be computed by summing the probability Pi,k in (15) based on (17) (line 2–4).
3. Slog and Slog−log are computed by multiplying Pi in lines 2–4 and the weights wi,log and wi,log−log,

respectively (line 5–6).
4. Then, Slog and Slog−log are compared with 1− γ that is a threshold to determine if hypothesises

are accepted or rejected (lines 7–11).

5.1. Approximation of Threshold for the Proposed Test

The test to detect the presence of impulsive noise is proposed in the above subsection.
However, a threshold to satisfy a target PFA is not defined. Thus, the threshold to satisfy PFA is
derived. The threshold of the proposed test is approximated due to its complexity. To approximate
the threshold, the asymptotic performance of the proposed test is analyzed. Figure 5a shows
PFA with N = 50, 300 and 1000 to show asymptotic performance of the test. It is clear that the
false alarm probability PFA of the proposed test is improved with a higher N but there is no
considerable improvement when the number of samples N exceeds 1000. Therefore, we can obtain the
approximation of the threshold on the PFA in N = 1000. Value of the threshold in the range between
0.05 to 0.2 is considered in Figure 5a, because the curve in Figure 5a can be modelled as a linear curve.
The x-axis and y-axis of the curve are log-scaled in Figure 5a and the relation between log-scaled x-axis
and y-axis becomes

log10(y) = a log10(x) + b, (20)

where a is a slope of the linear function and b is a y-intercept. Thus, the relation between PFA and
threshold in Figure 5a is given as

log10(PFA) = a log10(γ) + b. (21)
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Figure 5. Illustration of theoretical CCDF of AWGN and empirical CCDFs of impulsive noise models.
(a) Plotting threshold versus PFA in N = 50, 300 and 1000. (b) Plotting PFA versus simulation results of
threshold in N =1000 and derived threshold in (25).

To determine a and b, two pairs of (log10(PFA), log10(γ)) are required and Table 1 shows the pairs
obtained from simulation results. Once the two pairs of (log10(PFA), log10(γ)) are considered, a is
computed as

a =
log10(PFA,γ=0.2)− log10(PFA,γ=0.05)

log10(0.2)− log10(0.05)

=
(−0.6607)− (−2.5686)
−0.6778− (−1.3010)

= 3.0612.
(22)

Also, b is obtained as

b = log10(PFA,γ=0.05)− a · log10(0.05)

= −2.5686− 3.0612 · (−1.3010) = 1.4141.
(23)

By substituting a in (22) and b in (23) into a and b in (21), the relation is decided as

log10(PFA) = 3.0612 log10(γ) + 1.4141. (24)

Therefore, the threshold γ is determined as

γ = P0.3267
FA · 10−0.4619. (25)

Figure 5b shows the simulation results and proposed threshold in (25) to satisfy target PFA.
As shown in the figure, (25) and simulated thresholds are well matched.

Table 1. Two pairs of (log10(γ), log10(PFA)) in N = 1000.

log10(γ) −1.3010 −0.6778

log10(PFA) −2.5686 −0.6607

6. Results and Discussion

In this section, simulation results are provided to evaluate the performance of the proposed test
methodology, especially the miss detection probability performance for classification an impulsive
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noise model under various false alarm probability. For the extensive simulation, the false alarm
probability is given as

PFA = P(Decision of H1|H0 is true), (26)

and the miss detection probability is shown as

PMD = P(Decision of H0|H1 is true). (27)

where PD is the detection probability.
For simulations, complex impulsive noise samples are generated based on the Middleton class

A model in (2) and SαS model in (4), respectively, where the real and the imaginary components are
dependent and uncorrelated. For the Middleton class A, the model is characterized by the parameters
A and Γ such that the impulsiveness of the noise can be represented with A and Γ. When A is
increasing, Middleton class A noise becomes more likely to be Gaussian noise and, conversely, a low
value of A represents highly structured impulsive noise especially when A� 1 and ΓA� 1 [26,27].
Therefore, in order to effectively compare the performance of the proposed test method, we set A and
Γ to 0.01 and 5, respectively, for the impulsive noise model. The SαS model is characterized by the
parameter α, and if the value of α is small that implies the stronger the impulsive property. In general,
the value of α falls into between 1 and 2 in a practical environment [28]. Thus, we consider the SαS
model with α equals to 1.8 in this paper.

Receiver operating characteristic (ROC) analysis is widely used in signal processing and
communications systems to evaluate the detection performance, where it exploits two-dimensional
curves plotted by detection probability against false alarm probability [29]. Note that we adopt the
PMD as a performance metric instead of PD, thus the ROC curve is represented with PMD and PFA,
in this paper.

Figure 6 shows a comparison of PMD of the conventional K–S test and the proposed test in
Middleton class A noise with respect to false alarm probability where the number of observed samples
are 500. Here, it was observed that the proposed test has a lower miss detection probability than the
K–S test in the various impulsive noise environments. In particular, it can be easily observed that
the proposed test outperforms the K–S test by providing approximately 30% lower miss detection
probability at a PFA = 0.01 for the Middleton class A noise environment. Furthermore, in the case of
SαS noise model, the CCDF of the impulsive noise model is similar to the Gaussian noise. It means
that the difference of CCDF of those is not considered at any t̂i. Thus, the detection performance of the
conventional K–S test to SαS is poor. Note that the K–S test has a higher miss detection probability
under various false alarm probability because the K–S test does not enough capture the characteristics
of impulsive noise compared with the proposed test. On the other hand, compared with the K–S test
in the SαS noise model, the miss detection probability gain of the proposed test over the K–S test is
significant even at low false alarm probability.

In summary, the conventional K–S test uses the maximum difference between CCDFs of
received samples and the assumed distribution when the distribution of received samples follows
the distribution of impulsive noise. However, the maximum difference may correspond to Gaussian
component that is not the characteristic of impulsive noise when an impulsive property is stronger.
Unlike the conventional K–S test, the proposed test considers all amplitudes of the received samples
and computes differences of CCDFs between the assumed distribution and the received samples.
Besides, the proposed test improves the classification performance by utilizing the characteristics
of impulsive noise that it gives more weight to amplitudes corresponding to the characteristics of
impulsive noise than weight for the other amplitudes corresponding to the Gaussian component.
Through the simulation results, it was confirmed that the PMD performance of our proposed method
was improved by at least 28% and 87% for Middleton class A and SαS models, respectively, compared
to the existing conventional K–S test performance.
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Figure 6. Comparison of PMD of the proposed test and the conventional K–S test in various impulsive
noise environment. The parameter of Middleton class A noise is A = 10−2 and Γ = 5. Those of SαS
noise equals to α = 1.8, δ = 0, and λ = 1/4. N equals to 500.

7. Conclusions

This paper proposes a test to detect the presence of impulsive noise. The proposed method is
designed based on a weighted sum of all differences between CCDFs using thresholds. To improve
detection performance, different weights are proposed according to the Middleton class A and SαS
model, respectively. Finally, a threshold to satisfy target false alarm probability is obtained by analyzing
an asymptotic false alarm probability. In particular, a significant highlight of our proposed test method
is that it operates on a high detection probability with low false alarm probability; it can be used in
various cellular networks, for example, a vehicular network where an impulsive noise exists.
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