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Abstract— In this paper we investigate the performance of
output threshold maximum ratio combining (OT-MRC) and
minimum estimation and combining generalized selection com-
bining (MEC-GSC) scheme with dual branches over correlated
Nakagami-m fading channels. The OT-MRC and MEC-GSC
schemes select the minimum number of diversity branches such
that their combined received signal-to-noise ratio (SNR) is above
a certain pre-determined target SNR that is set to meet the
required quality of service (QoS). Based on the joint probability
density function (PDF) and moment generating function (MGF)
of the combined received SNR, the performance comparisons
of dual OT-MRC and MEC-GSC over correlated Nakagami-m
fading channels are presented.

Index Terms— Diversity, output threshold maximum ratio com-
bining, minimum estimation and combining generalized selection
that MEC-GSC schem can attain the fading channel

I. I NTRODUCTION

There has been much interest in diversity combining
schemes as a good way of mitigating the deleterious effect of
wireless fading channels without using the expensive resources
such as frequency band or/and the power of the transmitted
signal [1]. The maximal ratio combining (MRC), which is
known as the optimal diversity schemes, processes the signal
in order to provide the maximum combined output signal-to-
noise (SNR). As suboptimal schemes, the selection combining
(SC) selects the strongest signal for the detection among
the available diversity branches. The mixture of MRC and
SC, called generalized SC (GSC), combines some selected
branches in order of the signal strength in a way of MRC. All
these combining schemes require the channel estimation of all
available paths, which leads to the high complexity in the im-
plementation. In [2], [3], the low complexity diversity systems
named as output threshold MRC (OT-MRC) and minimum
estimation and combining GSC (MEC-GSC) were presented,
where each scheme is designed to lower the complexity while
they meet required performance.

The most popular assumption in studying the performance
of diversity schemes is identically and independently distrib-
uted branches. However, independent fading is not always
realizable in practice [4]. Especially for small-size mobile
terminals equipped with multiple antennas, they may have

insufficient antenna spacing to obtain independent fading in
each branch. Additionally, they might not have enough space
to place more than two antennas due to the size requirements.
Under these restrictions and limitations, investigating the per-
formance of dual branch diversity schemes in a correlated
fading channel environment has some practical meanings.

In this paper we consider the dual branch OT-MRC and
MEC-GSC schemes, which may be better applicable to the
mobile terminal owing to their low complexity1, over corre-
lated Nakagami-m fading channels and compare their perfor-
mance in average output SNR and average error rate to see
the effect of the correlation.

II. STATISTICS OFOT-MRC AND MEC-GSCWITH DUAL

BRANCHES

A. PDF

1) OT-MRC: Let γ1 andγ2 denotes the instantaneous SNR
of the first and second branch, respectively. If the channel
statistics is known, the joint PDF ofΓ and Lc for OT-MRC
with dual branches is given, based on its mode of operation,
as [5, eq. (5)]

fγOM
(γ, Lc)

=





f1(γ), γT ≤ γ < ∞, Lc = 1,∫ γT

0

f(γ1, γ − γ1)dγ1, γT ≤ γ < ∞, Lc = 2,

fMRC(γ), 0 ≤ γ < γT , Lc = 2,

(1)

where f1(γ) is the PDF ofγ1, fMRC(γ) is the PDF of the
output SNR of MRC over the given channels, andf(γ1, γ2)
is the joint PDF ofγ1 andγ2.

Whenγ1 andγ2 are jointly correlated Nakagami-m random
variables, the joint PDF ofγ1 andγ2 is given by [6, eq. (126)]

f(γ1, γ2) =
(

1√
σ1σ2

)m+1
(γ1γ2)

m−1
2

Γ(m)ρ
m−1

2 (1−ρ)

× exp
[
− 1

1−ρ ( γ1
σ1

+ γ2
σ2

)
]
Im−1

(
2
√

ργ1γ2√
σ1σ2(1−ρ)

)
,

(2)

1The low complexity may be interpreted as the low power consumption.
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where σ1 , γ1/m, σ2 , γ2/m, γl is the average SNR of
the lth branch (l=1,2), m is the Nakagami fading parameter
(m ≥ 0.5), ρ is the correlation coefficient betweenγ1 andγ2,
Γ(·) is the gamma function, andIv(·) is the modified Bessel
function of the first kind of orderv.

Substituting of (2) into (1) and using the PDF of Nakagami-
m fading channel model [6, eq. (3)] and the PDF of MRC
output over two correlated Nakagami-m branches given in [6,
eq. (142)], we can write the joint PDF ofΓ andLc as

fγOM
(γ, Lc)

=





e−
γ

σ1
γm−1

Γ(m)σ1
m

, γT ≤ γ < ∞, Lc = 1,

f∗(γ), γT ≤ γ < ∞, Lc = 2,√
πe−αγξm

Γ(m)

(
γ

2β

)m− 1
2

Im− 1
2
(βγ), 0 ≤ γ < γT , Lc = 2,

(3)

where

α , σ1 + σ2

2σ1σ2(1− ρ)
, β2 , (σ1 − σ2)2 + 4σ1σ2ρ

4σ2
1σ2

2(1− ρ)2
,

ξ , 1
σ1σ2(1− ρ)

.

(4)

In (3) f∗(γ) can be derived, using the series expansion of the
Bessel function [7, eq. (8.445)] and the binomial expansion,
as

f∗(γ) =
∫ γT

0

f(γ1, γ − γ1)dγ1

=
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

) 2i∑

j=0

(
2i

j

)

× ρk(−1)3i−jξm+k

k!Γ(m + k)Γ(m)(1− ρ)kχj+1

(
γ

2

)2m+2k−j−2

× e−σ1ξγγ(j + 1, χγT ), (5)

where

χ , σ2 − σ1

σ1σ2(1− ρ)
. (6)

For identically distributed fading channels, i.e.,σ1 = σ2 = σ,
(5) is simplified with the help of the L’Hospital’s rule as

f∗(γ) =
∞∑

k=0

ρkξm+ke−σξγγ2m+2k−1

k!Γ(m + k)Γ(m)(1− ρ)k

× B

(
γT

γ
, m + k, m + k

)
, (7)

where B(x, p, q)is the incomplete beta function [7, eq.
(8.391)].

As a special case, for independent identically distributed
fading channels, i.e.,ρ = 0, (7) can be further reduced to

f∗(γ) = e−
γ
σ

γ2m−1

σ2m[Γ(m)]2
B

(
γT

γ
,m,m

)
, (8)

which agrees with [5, eq. (9)].

2) MEC-GSC:Based on [3], we can write the PDF of the
MEC-GSC output SNR,γMEC , as

(i) for γT ≤ γ < ∞, andLc = 1,

fγMEC
(γ, Lc) = f1(γ) +

∫ γT

0

f(γ1, γ)dγ1 (9)

(ii) for γT ≤ γ < 2γT , andLc = 2,

fγMEC
(γ, Lc)=

∫ γ
2

0

f(γ − γ2, γ2)dγ2−
∫ γ

γT

f(γ1, γ − γ1)dγ1,

(10)
(iii) for 0 ≤ γ < γT , andLc = 2,

fγMEC
(γ, Lc) = fMRC(γ), (11)

wheref1(γ) is the PDF ofγ1 andfMRC(γ) is the PDF of the
output SNR of MRC over the given channels. Substituting
(2) into (9)-(11) , we have the PDF given as

(i) For γT ≤ γ < ∞, andLc = 1,

fγMEC
(γ, Lc) =

γm−1e−
γ

σ1

Γ(m)σ1
m

+
γm−1e−

γ
σ2

Γ(m)σ2
m

[
1−Qm(

√
2σ1ξργ,

√
2σ2ξγT )

] (12)

(ii) for γT ≤ γ < ∞, andLc = 2,

fγMEC
(γ, Lc) = 2f∗(γ)−

√
πe−αγξm

Γ(m)

(
γ

2β

)m− 1
2

Im− 1
2
(βγ)

(13)
(iii) for 0 ≤ γ < γT andLc = 2,

fγMEC
(γ, Lc) =

√
πe−αγξm

Γ(m)

(
γ

2β

)m− 1
2

Im− 1
2
(βγ) (14)

wheref∗(γ) is defined in (5) andQm(·, ·) is the generalized
(mth order) Marcum Q function [8].

B. MGF

If the PDF,f(γ, Lc), is known, the MGF for dual branch
diversity schemes is easily derived by calculating

M(s) =
∫ ∞

0

esγ
2∑

Lc=1

f(γ, Lc)dγ. (15)

1) OT-MRC: Substituting (3) into (15), we obtain the MGF
for dual OT-MRC as

MOM(s) =
∫ ∞

γT

esγe−
γ

σ1
γm−1

Γ(m)σ1
m

dγ +
∫ ∞

γT

esγf∗(γ)dγ

+
∫ γT

0

esγ

√
πe−αγξm

Γ(m)

(
γ

2β

)m−1
2

Im−1
2
(βγ)dγ.
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Using the identity for the modified Bessel function of the first
kind given in [7, eq. (8.467)], we can express (16) as

MOM(s) =
Γ(m, ( 1

σ1
− s)γT )

Γ(m)σm
1 ( 1

σ1
− s)m

+M∗(s)

+
m−1∑

k=0

Γ(m + k)ξm

k!Γ(m)Γ(m− k)(2β)m+k

×
{

(−1)k

(α−β−s)m−k γ(m− k, (α− β − s)γT )

+ (−1)m

(α+β−s)m−k γ(m− k, (α + β − s)γT )
}

(16)

where γ(m, x) and Γ(m,x) are the lower and upper in-
complete gamma functions, respectively, defined in [7, eq.
(8.350.1) and (8.350.2)] and

M∗(s) =
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)
ρkξm+k(−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i

× γ(m + k + i, χγT )
(σ1ξ − s)m+k−i

Γ(m + k − i, γT (σ1ξ − s)).

(17)

Notice that, whenσ1 = σ2 = σ, (17) shrinks to

M∗(s) =
∞∑

k=0

m+k−1∑

i=0

ρkξm+kγm+k+i
T (−1)i

k!i!(m + k + i)Γ(m)Γ(m + k − i)(1− ρ)k

× (σξ − s)i−m−kΓ(m + k − i, γT (σξ − s)),
(18)

which can be further simplified, whenρ = 0, as

M∗(s) =
m−1∑

i=0

ξmγm+i
T (−1)i

i!(m + i)Γ(m)Γ(m− i)

× (σξ − s)i−mΓ(m− i, γT (σξ − s)). (19)

2) MEC-GSC:Substituting (12) - (14) into (15) and adopt-
ing the expression for Marcum-Q function in [9, eq. (8)] the
MGF of γMG can be written as

MMEC(s) =
∑m−1

k=0
Γ(m+k)ξm

k!Γ(m)Γ(m−k)(2β)m+k

×
{

(−1)k

(α−β−s)m−k

(
2γ(m− k, (α− β − s)γT )

−γ(m− k, 2(α− β − s)γT )
)

+ (−1)m

(α+β−s)m−k

×
(

2γ(m− k, (α + β − s)γT )

−γ(m− k, 2(α + β − s)γT )
)}

+2M∗∗(s) +
Γ(m,(1−σ1s)

γT
σ1

)

Γ(m)(1−σ1s)m +
Γ(m,(1−σ2s)

γT
σ2

)

Γ(m)(1−σ2s)m

− eσ2ξγT

Γ(m)σm
2

∑∞
k=0

∑m+k−1
n=0

1
k!n! (σ1ξρ)k(σ2ξγT )n

×( 1
σ2
− s + σ1ξρ)−(m+k)Γ(m + k, ( 1

σ2
− s + σ1ξρ)γT )

(20)
where

M∗∗(s) =
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)
ρkξm+k(−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i

× γ(m + k + i, χγT )
(σ1ξ − s)m+k−i

{
Γ(m + k − i, γT (σ1ξ − s))

− Γ(m + k − i, 2γT (σ1ξ − s))
}

,

(21)

which can be further simplified by the same techniques shown
in (18) and (19) whenσ1 = σ2 = σ and/orρ = 0.

III. PERFORMANCE ANALYSIS

A. Average combined SNR

The average combined SNR of dual diversity systems is
given by

γ =
∫ ∞

0

γ

2∑

Lc=1

f(γ, Lc)dγ. (22)

1) OT-MRC: Substituting (3) into (22) and some mathe-
matical manipulation lead to

γ
OM

=
σ1Γ(m + 1, γT

σ1
)

Γ(m)
+

∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)

× ρkξi−1σi−m−k−1
1 (−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i

× γ(m + k + i, χγT )Γ(m + k − i + 1, γT σξ)

+
m−1∑

k=0

Γ(m + k)ξm

k!Γ(m)Γ(m− k)(2β)m+k

×
{

(−1)k

(α− β)m−k+1
γ(m− k + 1, (α− β)γT )

+
(−1)m

(α + β)m−k+1
γ(m− k + 1, (α + β)γT )

}

(23)

2) MEC-GSC: Similarly, substituting (12) - (14) into (22)
and using the similar manipulation shown previously, we
obtain
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γ
MEC

=
m−1∑

k=0

Γ(m + k)
Γ(k + 1)Γ(m)Γ(m− k)[σ1σ2(1− ρ)]m(2β)m+k

×
{

(−1)k

(α− β)m−k+1

(
2γ(m− k + 1, (α− β)γT )

− γ(m− k + 1, 2(α− β)γT )
)

+
(−1)m

(α + β)m−k+1

(
2γ(m− k + 1, (α + β)γT )

− γ(m− k + 1, 2(α + β)γT )
)}

+
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)

× ρkξi−1σi−m−k−1
1 (−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i
γ(m + k + i, χγT )

× {Γ(m + k − i + 1, γT σ1ξ)− Γ(m + k − i + 1, 2γT σ1ξ)}

+
σ1Γ(m + 1, γT

σ1
)

Γ(m)
+

σ2Γ(m + 1, γT

σ2
)

Γ(m)

− eσ2ξγT

Γ(m)σm
2

∞∑

k=0

m+k−1∑
n=0

1
k!n!

(σ1ξρ)k(σ2ξγT )n

×
(

σ2

1 + ξσ1σ2ρ

)m+k+1

Γ(m + k + 1, (1 + ξσ1σ2ρ)
γT

σ2
)

(24)

B. Average number of branches

The average number of branches is given by

Lc =
2∑

Lc=1

Lc

∫ ∞

0

f(γ, Lc)dγ. (25)

1) OT-MRC: Substituting (3) into (25) and after some
mathematical manipulation, we get the average number of
branches as

LcOM =
Γ(m, γT

σ1
)

Γ(m)
+ 2

m−1∑

k=0

Γ(m + k)ξm

k!Γ(m)Γ(m− k)(2β)m+k

×
{

(−1)k

(α− β)m−k
γ(m− k, (α− β)γT )

+
(−1)m

(α + β)m−k
γ(m− k, (α + β)γT )

}
+ 2M∗(0),

(26)

whereM∗(s) is defined in (17).

2) MEC-GSC: Substituting (12) - (14) into (25) and after
some mathematical manipulation, we get the average number
of branches as

LcMEC = 2
m−1∑

k=0

Γ(m + k)ξm

Γ(k + 1)Γ(m)Γ(m− k)(2β)m+k

×
{

(−1)k

(α− β)m−k

(
2γ(m− k, (α− β)γT )

− γ(m− k, 2(α− β)γT )
)

+
(−1)m

(α + β)m−k

(
2γ(m− k, (α + β)γT )

− γ(m− k, 2(α + β)γT )
)}

+ 4M∗∗(0)

+
Γ(m, γT

σ1
)

Γ(m)
+

Γ(m, γT

σ2
)

Γ(m)
− eσ2ξγT

Γ(m)σm
2

∞∑

k=0

m+k−1∑
n=0

1
k!n!

(σ1ξρ)k

× (σ2ξγT )n

(
σ2

1 + ξσ1σ2ρ

)m+k

Γ(m + k, (1 + ξσ1σ2ρ)
γT

σ2
)

(27)

whereM∗∗(s) is defined in (21).

C. Average error rate

The symbol error rate (SER), denoted byPS(E), for M-
PSK is obtained as [10]

PS(E) =
1
π

∫ M−1
M π

0

M
(
− sin2(π/M)

sin2(φ)

)
dφ (28)

1) OT-MRC: Substituting (16) into (28), the SER for dual
OT-MRC can be derived as

PSOM(E) =
1

σm
1

I1

(
m, σ1,

γT

σ1

)
+ P ∗S(E)

+
m−1∑

k=0

Γ(m + k)ξm

Γ(k + 1)Γ(m)(2β)m+k

×
{

(−1)kI2

(
m− k,

1
α− β

, γT (α− β)
)

+ (−1)mI2

(
m− k,

1
α + β

, γT (α + β)
)}

,

(29)

where

I1(a, b, c) =
ba

π

a−1∑

i=0

ci

i!

∫ M−1
M π

0

(
sin2φ

sin2φ + bsin2(π/M)

)a−i

× e
−c

sin2φ+bsin2(π/M)
sin2φ dφ,

I2(a, b, c) =
ba

π

{ ∫ M−1
M π

0

(
sin2φ

sin2φ + bsin2(π/M)

)a

dφ

−
a−1∑

i=0

ci

i!

∫ M−1
M π

0

(
sin2φ

sin2φ + bsin2(π/M)

)a−i

× e
−c

sin2φ+bsin2(π/M)
sin2φ dφ

}
, (30)
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and

P ∗S(E) =
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)
ρkξm+k(−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i

× Γ(m + k − i)γ(m + k + i, χγT )

× I1

(
m + k − i, 1

σ1ξ , γT σ1ξ

)
.

(31)
If the branch powers are equal, i.e.,σ1 = σ2 = σ, (35) can
be written as

P ∗S(E) =
∞∑

k=0

m+k−1∑

i=0

ρkξm+kγm+k+i
T (−1)i

k!i!(m + k + i)Γ(m)(1− ρ)k

× I1

(
m + k − i,

1
σξ

, γT σξ

)
, (32)

which can be rewritten forρ = 0 as

P ∗S(E) =
m−1∑

i=0

ξmγm+i
T (−1)i

i!(m + i)Γ(m)
I1

(
m− i,

1
σξ

, γT σξ

)
. (33)

2) MEC-GSC:Substituting (20) into (28), the SER for dual
MS-GSC can be derived as

PSMEC(E) =
m−1∑

k=0

Γ(m + k)ξm

Γ(k + 1)Γ(m)(2β)m+k

×
{

(−1)k

[
2I2

(
m− k, 1

α−β , γT (α− β)
)

−I2

(
m− k, 1

α−β , 2γT (α− β)
)]

+(−1)m

[
2I2

(
m− k, 1

α+β , γT (α + β)
)

−I2

(
m− k, 1

α+β , 2γT (α + β)
)]}

+ 2P ∗∗S (E)

+
1

σm
1

I1

(
m, σ1,

γT

σ1

)
+

1
σm

2

I1

(
m,σ2,

γT

σ2

)

− eσ2ξγT

Γ(m)σm
2

∞∑

k=0

m+k−1∑
n=0

1
k!n!

(σ1ξρ)k(σ2ξγT )n

×Γ(m + k)I1

(
m + k, σ2

1+ξσ1σ2ρ , (1 + ξσ1σ2ρ)γT

σ2

)

(34)
where

P ∗∗S (E) =
∞∑

k=0

m+k−1∑

i=0

(
m + k − 1

i

)
ρkξm+k(−1)i(1− ρ)−k

k!Γ(m + k)Γ(m)χm+k+i

× Γ(m + k − i)γ(m + k + i, χγT )

×
{
I1

(
m + k − i,

1
σ1ξ

, γT σ1ξ

)

− I1

(
m + k − i,

1
σ1ξ

, 2γT σ1ξ

)}
.

(35)

If the branch powers are equal, i.e.,σ1 = σ2 = σ, (34) can
be written as

PSMEC(E) =
m−1∑

k=0

Γ(m + k)ξm

Γ(k + 1)Γ(m)(2β)m+k

×
{

(−1)k

[
2I2

(
m− k,

1
α− β

, γT (α− β)
)

− I2

(
m− k,

1
α− β

, 2γT (α− β)
)]

+ (−1)m

[
2I2

(
m− k,

1
α + β

, γT (α + β)
)

− I2

(
m− k,

1
α + β

, 2γT (α + β)
)]}

+ 2
∞∑

k=0

m+k−1∑

i=0

ρkξm+kγm+k+i
T (−1)i

k!i!(m + k + i)Γ(m)(1− ρ)k

×
{
I1

(
m+k−i,

1
σξ

, γT σξ

)
−I1

(
m+k−i,

1
σξ

, 2γT σξ

)}

+
1

σm
I1

(
m,σ,

γT

σ

)
− eσξγT

Γ(m)σm

∞∑

k=0

m+k−1∑
n=0

1
k!n!

(σξρ)k(σξγT )n

× Γ(m + k)I1

(
m + k,

σ

1 + ξσ2ρ
, (1 + ξσ2ρ)

γT

σ

)

(36)

IV. N UMERICAL RESULTS

As numerical examples we consider the nonidentical distri-
butions with a linear relation between two SNRs of diversity
paths such asγ2 = qγ1 and setq = 0.9. The target SNR
and the Nakagami parameter are also fixed asγT = 7 dB and
m = 2, respectively.

Fig. 1 shows the average combined SNR for dual OT-MRC
and MEC-GSC, whenρ = 0, 0.3, 0.6, and0.9, and compared
with the performance of no diversity (single branch) and dual
MRC. We can see that, when the average branch SNR is zero
dB, the average combined SNR of both OT-MRC and MEC-
GSC follows the combined SNR of dual MRC withρ = 0,
and it gradually steps onto the SNR of a single branch (i.e.
no diversity) as the average SNR per branch increases. Fig.2
shows the ratio of average combined SNR of dual OT-MRC
and MEC-GSC, whenρ = 0, 0.3, 0.6, and0.9. As shown in
this figure, OT-MRC scheme slightly outperforms MEC-GSC
around preselected threshold by0 ∼ 0.45dB depending on the
degree of correlation.

Fig. 3 shows the average number of branches for dual OT-
MRC and MEC-GSC whenρ = 0, 0.3, 0.6, and0.9. First note
that the average number of combined branches of OT-MRC is
not affected by the correlation coefficient. Also note that for
any value of the correlation coefficient the MEC-GSC requires
smaller average number of combined branches than the OT-
MRC, while the difference of BER performance between
OT-MRC and MEC-GSC is negligible over the correlation
coefficient as shown in Fig. 4.

Therefore we can conclude that the OT-MRC is more
efficient in terms of the power-consumption, while satisfying
the required target threshold.



6

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Average SNR of the First Branch(dB)

A
ve

ra
ge

 C
om

bi
ne

d 
S

N
R

(d
B

)
No diversity

MRC ρ=0

OT−MRC,ρ=0

OT−MRC,ρ=0.3

OT−MRC,ρ=0.6

OT−MRC,ρ=0.9

MEC−GSC,ρ=0

MEC−GSC,ρ=0.3

MEC−GSC,ρ=0.6

MEC−GSC,ρ=0.9
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